UNCLASSIFIED

ap_299 439

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED




NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the sald drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.,




62-1148

LIMIT THEOREMS FOR SUMS OF INDEPENDENT VARTABLES
TAKING INTO ACCOUNT LARGE DEVIATIONS, II

By
Yu, V. Linnik

VN B
A s .“\

-
JAN301963

(o .
:3 “ULJL_a‘.nl U ul'}

{- TISIA D

295439




FID-TT-62-1148/142+4

UNEDITED ROUGH DRAFT TRANSLATION

LIMIT THEOREMS F(R SUMS OF INDEPENDENT VARIABLES
TAKING INTO ACCOUNT LARGE DEVIATIONS. II

By: Yu., V. Linnik
English Pages: 20

Source: Teorlya Veroyatnostey 1 yeye Primeneniya,
Volume VI, Issue 4, 1961, pp. 377-391.

SC-1508

SOV/52-61-6-4-1/5
TING TRANSLATION (S A RENDITION OF THE ORIO)-
NAL FOREION TEXT MITHOUT ANY ANALYTICAL OR
EOITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY,
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE
AND DO NOT NECESISARILY REFLECT THE POSITION TRANSLATION SERYVICES BRANCH
OR OPNNION OF THE FOREICH TECHNOLOOY Di- FOREION TECHNOLOOY DIVISION |
VINON. WP-APB, ONIO,

~t



LIMIT THEOREMS FOR SUMS OF INDEPENDENT VARIABLES
TAKING INTO ACCOUNT LARGE DEVIATIONS. II

Yu. V. Linnik

2. Narrow zones of local and integral normal attraction.

0. Let us follow the symbols used in Part I [16]. Let us
consider the narrow zones of local normal convergence for a variable

X, of class (d) [16]. It will be more convenient for us to start not

fiom the zones [0, ¥ (n)] and [h -¥(n), O], but from the functions
h(x), which were described in Section 1 of Part I [16]. Let us
examine the conditions
Eexph (| X)) < oo. (0.1)
Let the function h(x) of class I be given [16]. It is subJect to
the conditions [16]:
(log x)Hte Ch(x) S x'h, (x> 1) (0.2)
h(x) = exp(H(log x)), where H(x) 1s monotonic and differentiable
H(@ LK) H(@)+0 @ 200, (0.3)
© H' (2)exp H(2) > ¢ 2t (0.4)

Let us define a new positive function A(n) by the equation

R(YaA () = (A (). (0.5)
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Iheorem 1. Condition (0.1), where h(x) belong to class I, is

necessary in order that the zones [0, A (n) p (n), O] be z. u. 1. n.

a. [zones of uniform linear normal attraction], and is sufficient in
- order that the zones [0,A(n)/p(n)l; [-A(n)/p(n), O] be z. u. 1. n. a.

Theorem 2. The same proposition as in Theorem 1 is valid for z.

n._a. (integral), and convergence in the corresponding zones is uniform.

For h(x) belonging to class II, let us define A(n) from the

condition: A{n) = Vh(n):VM(n)mg n. DBecause of the properties of h(n),
the defined A(n) will differ from P(n) only by the factor of A(n),
which Was determined from Eq. (0.5). Further, the following theorems
are valid:

Theorem 3. If h(x) belongs to class II, then a proposition

analogous to Theorem 1 for the above function A(n) is valid for the

2. u. 1l. n. a.

Theorem 4. For h(x) of class II, and the above-indicated A(n),

& proposition analogous to Theorem 3 1is valid for the z. n. a.

For h(x) of class III we have the narrowest zones. Here let
A(n) = J/iog n.

Theorem 5. For h(x) of class III and A(n)

/ 1og n, the same

proposition as in Theorem 1 1s valid for the z. u. 1. n. a. and the

variables XJC(d); the same proposition as in Theorem 2 is valid for

the z. n. a.

1. PFirst of all, let us explain the appropriateness of conditions
(0.2), (0.3) and (0.4) imposed on h(x).

The condition h(x) > (log xF * €0 (the significance of which 1s
to be explained later) ensures that the zones are not the narrowest,
and 1t can be compared with the condition K exp 3 1og|xJ| < ®», which

ensures only the existence of a third moment. The condition h(x) <
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< xl/ 2 indicates that the zones are narrow [16]. According to Theorem
3 of the previous work [16], a: condition of the form of (2.1) of this
work [16] corresponds to the zones [O, na(p(n))il]; [- c’(;,)(n))-'t;‘-, 0]
when o < %‘-,. At a < % , the exponent of 4a/2a + 1 under this condition
1s ¢ 1/2. It 1s natural to assume that h(x) is monotonic and differ-
entiable, and to represent it in the form of h(x) = exp (H(log x})
when x > 1, where H(z) 1s the same, If it 1s assumed that h'(x) 1s
monotonic (which is natural), then this leads to conditi~n (0.3)
(the narrowness of the zone). Violation of (0.4) with the indicated
monotonicity of h'(x) would lead to violation of the left inequality
in (0.2).

2. lLet us prove that condition (0.1) 1is necessary in order that
[0, A(n)p(n)]; [-A(n)p(n), O] be z. n. a. Let these zones be z. n. a.

Then at n > n_ we have (because A(n)—» w as n— w)

P(zu>A(an(n))<exp(_W), (2.1)

Let condition (0.1) not be fulfilled. Then a sequence Xy ®
is found such that either

P (X1 > xm) > exp(— 2h (xm)), (2.2)
or

P(X; < — xm) > exp(— 2k (| xm])). (2.3)

Let (2.2) be fulfilled. For a sufficlently large value of m,
let us take n such that x,=on'sA(n)o(n)+0; [8)<1. - The event indicated

in (2.1) certainly occurs if two independent events occur:

X, >onAn)p(n)-+ 0, Xy + Xa+ ...+ Xes¥n| < 1. Hence, according to the central
limit theorem and (2.2), we have:

P (20> 2EEE) > P (X, > ) > ¢4 exp(— 26 (x)) = (2.4)

= Coexp[— 2k (s ¥ nA (1) p (n) + O)> co exp[— 2k (26 Y nA (n) p (M))].

FTD-TT-62-1148/1+2+4 -3-




When £, n are sufficiently large, according to condition (0.3)

h (En) = exp H (log ¥ + log n) < exp (H (log §) + o (log n)) = A (&) notv. (2.5)
Letting E=VnA(n); n=20p(n), , We find

24 (26 VA () p (1) = 2(A (m)) (o ()0, (2.6)

which contradicts (2.1). Analogous reasoning 1s carried out for case
(2.3). 1f xJC(d) [1], then condition (0.1) is necessary in order
that [0,A(n)p(n)] and [-A(n)p(n), O] both be z. u. 1. n. a. The
proof 1s analogous to the preceding one, taking into account the
reasoning in Section 4 of Pawt I {16].

3, Let us consider the problem of whether condition (0.1) is
sufficient in order that the zones [0,A(n)p(m)] and [-A(n)p(n), O] be
z. u. 1. n. a. when ch(d). In condition (0.1) we can examine the
function ah(x) instead of h(x) (positive constants), and, therefore,
without losing generality, assume 0 = 1, At a glven p(n), let us
define the function A,(n) from the equation

Vo) = e (3.1)

B (A

If we prove that the zone [0, A,(n)] 18 a z. u. 1. n. a., then
the zone [O, %{%} ] will also be, since 1t 1s narrower. Indeed,
letting A,(n) = A(n)¥(n), we find from (3.1), (0.5) and the reasoning
in Section 2

T @)™ (¢ (a); g () = (+)“‘)'
p(n)

Let
log Ay (n) = X, (n), (3.2)
and we obtain from (3.1)
H (log Ay (n) 1 log p—':%) ~2X, (). (3.3)

4.




Now letting

l, (n) = log V" = —;- logn —py(n),

(3.4)

we have

H X, (1) + () = 2K, () X () + 1y () = H™ (2%, (). (3.5)

Further, let us determine the small number p from the condition
m- .= eB(A, (n)! = eBexp(2X, (n) (3.6)
(B, as in Part I [16], 1s a bounded number, not always the same).
Inasmuch as (1 —2p)logn =B +2X, (n),
wlogn = B+ B2 X, (n)= ,(n) + X, (1) + py (1) — 2X (n), (3.7)
taking (3.5) into account, we find

plogn = H™* 2X, () 4 py(n) — 2X, (n), (3.8)
while (3.7) glves
_1t_ XM B
b= T ogn g (3.9)

4. Now, in the symbols of Part I [16], we obtain formulas (5.6)
and (6.5)3 Ve p—”
pea9) = 22 [ @Orep—ixVadr + Bexp(—cié™*™).
N (4'1)
Bearing in mind the use of the method [16], we wish to bound ¢(Q)(t)
when |t| ¢ n7*

cp“’(t)zB?x'exp(—-h(.' dr = By ex - ‘
;) v))dx i\up(qlogx h(x))dx. (4.2)

Now let us establish that

xh’(x) —~coas x— o0, (4-3)

In fact

h(x) = exp H (log x); xh’ (v )- dh(r)

~ = eXp (/1 (log x)) H’ (log x) — 0o
ag v-+o
on the strength of (0.4%). The integrand in (4.2) in the exponent

has the form of q log x - h(x), and i1ts derivative 1is %»- h'(x).




Let us set up the saddle-point equation
xh' (x) = q. (4%.%)
On the strength of (4.3), it has a unique solution for q > q,. Let
us denote this solution by Q.(q). '
Lemma 1. A bound of the following form is valid:

(xvemp(—hdc - Bexp(By - glogQ (@) —h (2% @) (4.5)
Let us find‘ the abscissa x = x, such that when x > x;
h (%) > 27 log x; n(x)—qlogx,\’li‘-’ (4.6)
Since h(x) > (log a)2+€0 according to (0.2), then (4. 6), certainly,
will be fulfilled 1if (Ing)’+‘°>2qIng. log\>(2q)”". \>pr(24,'*=- -x, ©lnce
when > x, h(x)—qlong.».?hm ,\-?(IOg.\')’H-. we have

o§x¢ d\xp (—h()dyv=s B ( 'y 7 )

Ay

The function q log x - h(x) has a maximum at x = Qo(q) and then

decreases (see (4.4)) so that
{ xexp(—h(x)dv = Bexp By + qlogQuie) ~h @u(@)). (4.8)
1
Using Lemma 1, we obtain

q,(ﬂ) n
qt

{
sBequ(B-rlogQ..(‘H ";‘"(Qo(‘l” -—logq)-, (4.9)
Ietting (as in Part I [16], (6.7))
Bolt+ 1) U4y g Lo, (4.10)

we obtain when K(t) = log ¢(t), (Itl < gg)s

K (t,) v (logdet -+t oy - (4.11)
5. Let

Lq) #10gQ, @)=L (Q (@) — logg - (5.1)




and let us show that L(q) is a non-decreasing function cf q. From

the equality
Q.(Q)h' Q@) =4 (5.2)

by simple calculation it 1s deduced that
“(q) = L(L —1)
L@=—(-h@an—1). (5.3)
Now 1t 1is sufficient to show that h(Qo(q)) zZq or h(Qo(q)) z Qo(q) .

* h'(Qo(Q)) or d log h(y)/d log y £ L, 1.e., H!'(z) £ 1, which corre-
sponds to (0.3). Thus, L(q) is monotonic. From (4.9) let us derive

(a) (1.)
-’%f'=Bltl'eXPqu+qL(q))- (5.4)

let us choose the contour |t| = e such that (5.4%) is sufficlently
small over it, Let

v=v(Q) =ca+L@), (5.5)
where ¢, 1s sufficiently large. Then, when [t| = e””
Bexp(Bv—c.q—qL(q)HL(e))=Bexp(—{'q)i({-)'- (5.6)
19° (1) , Po°(1.) o' (t) - 1 ‘
Lz)“ +-?;—m Lt S L (5.7)
so that
33 L
Rdi Ul (5.8)
Hence when |t | ¢ n7"
Wy ~ dt_ _po i .1 N 5.9)
K® (t) = 2ni " i—v 8% () pH o mi&—v Jepe (
= Bg' exp (¢¥ (q)) = Bexp(Bg + qlog Qs (@) — h (Qe (9
sup \K‘"”(l)-ﬂl- = Bexp [m (B -+ log Q (m)— (5.0)
<=k "
~ L 4(Qy (m) — logm — p log )}
m -
Now let us determine m by using the equalities
log Qo (m) ~ H™* (2X, (n)); (5.11)
exp H (log Qq (m)) == h (Qy (m)) = exp [2X, (n)). (5.12)




Let us substitute this into (5.10) and, taking (3.8) into account,
reduce (5.10) to the form
' Bexp{m (B-p.(n) +2X, (n)-—logm—i— exp 2X, (n))} -

=BGXP(M(B—m(n)—exp(zx.(n)—loxm)+2X.(")—b¢m$)- (5.23)
Now let us show that
2X, (n) —logm—+oco a8 n—oco. (5.14)
On the strength of (5.2) "
exp H (log Qu (m)) H’ (log @y (m)) = Qo () 4’ (Qy (m)) = m, (5.15)

From (5.11) we find: H(log ¢,(m)) = 2X,(n). Let us substitute

into (5.15)
exp (2X, () H’ (log Qq (m)) = exp (2X, (M) H' (X, (n) + 1 (n)) = m.

Hence, on the strength of (0.3),
2X () — log n -= — log H (X, (1) -+ (n)) = co. (5.16)
Using (5.1%), we obtain for (5.13) the bound
B exp (— cyexp (2X, (n))). (5.17)
Note that because of (3.6), exp(2X,(n)) = Bnt72H |
6. Now (5.10) gives

~ " '
mi‘:llu K™ (1) Fl = Bexp(— c-,.-e_xp (2X,(r.|))), (6.1)

so that when |t| ¢ n™%

. 6.2
K(t)=— rY +.’2_" ‘Pr;—l, i- Bexp(—c,exp 2X, (), ( )

where

®r = K“1(0) = Bexp (Br - rlog Q(r) — h (@, (r))). (6.3)

In view of the fact that -2X,(n>H (log Ve ) =Iogh(-;':—%)>exp(2x, ">

P(n)
ﬁ V- s+t . .
>h ( p(n) ) > (b‘ ﬁ) » nexp(—c exp 2X,(n)) =Bexp(—cyexp2X,(n)), 80 that

nK (t) = nKy ({) -+ B exp (— cn—), (6.4)

where
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3
+
M
g
!

"J
AU A (6.5)
Hence it 1s easy to derive

n—h
Pz, (x) = %; j‘ exp(—'lz'-' + Kty —é Vr?tx) dt 4 Bexp (= cnt—m), (6.6)

_.—“

where

oy o
Kg(’) =E¢r-"|‘ (6,7)

=
Let us take the integral function
exp (nKy (1) (6.8)
Let w3 = pn - Wy where the small number w, 1s determined as
follows: 1f exp(2X,(n))/m > log n, then we take © = 1%5 , and if
exp 2X,(n)/m > log n, we take mu=r’,0":n;'2:¢-'_:ﬁ).
When r < m and |t| ¢ n™M* , let us consider
-”d—"=Bexpr(B+Iogtp(r)——:-h(Q.(r))—’logr—u,logn). (5-9)
Now we note that x,(h) = o(log n), as 18 apparent frc.am‘:(B.}) and (0.3)
(because according to (0.3), H(z) = o(z)). In view of this, 1t follows
from (3.7) that
Cw=to(l), 13049 +0()). (6.10)

Therefore, when 3 { r < ¢,

oo
Ao =0l (6.11)

Let us move to the case of ¢, { r { m. Let us isolate the values

ca < r< (log n)L + £/2 and prove the bound
: 1
log Qs () = Bexpri+h, (6.12)
From (0.4) we have xh'(x)>(logxy+t . In view of this, from the

equality Q)K" Q (N =r 1t follows that (ogQn)+h<r; g, <expr%
which proves (6.12). At the indicated values of r, (6.9) gives

1
‘Bmex.pr B8+ "ﬂ.' —0,48log n) == Br—wer, (6.13)

-9-



Summation of these expressions with respect to ¢, r(lognpttnn glves
B, (6.14)

Now let (log n)1 + F’l/a < r {m. Because of the monotonicity of the
function L(r) (see Section 5), (6.9) does not exceed .

(B+10gQ.(m)———h(Q.(m))—|ogm udozn) (6.15)
By comparison with (5.10) and (5.13), we obtain the bound for (6.15)

Bexprl(B'—zlmexpM.(n)—p.(n)+m;!logn). (6.16)
Hence taking the definition of the number W, into account, we find
for (6.9)

m 1 .
Bexpr (—%—;loyn) + Bexpr (—%‘l_s_:' exp2X (n)). £ (6.17)

By summing these expressions with respect to v, (logn)'ﬂ-/'<r<m.‘
for the corresponding part of Ka(t) we obtain' the bound
Bn"2, (6.18)
Gathering together bounds (6.11), (6.14) and (6.18), we find,

when |t| = n ~H

nKy(l) == BexpnK, (f) = B. (6.19)

7. Let |

ks () = 3 %L (7.1)
ru=g
then, in accordance with (6.19),

Xr-x-— g) —L (0K ) 4y _. By nws, (7.2)

x lll=n"‘
71’ = Bn"—W) = Bexp (— 2w, logn), npu r>m, |ll<n-“.. (7.3)

The numbers N have various values depending upon the behavior of
exp(2X, (n))/m, as described in Section 6. Each of these cases reduces
to the bound

B 2; exp(—

r=m

expl2)\ m). —Bexp(—-—exp|2x,(n)l) (7,4)

=10



rmg

Thus exp(aKy(f)] - | T > 1"7' + Bexp(—c,exp[2X, (n)]),

' - ot ' ‘ m (7 05)
p,g(.f:)-%'- ) exp(—-lz':—itxlfﬁ) (l_+ p) 1_;_{_) +
' -k r=g
4 Bexp(—cye' ), | ‘ (7.6)
Aoy . m ,
P, (¥) = — \ exp(—iz-—tax) (1 + z%(-vi:) )+
- : (7.7)

+ Bexp (— cee**r™).

Now let us consider

-]

e—t'/l'l"(ﬁ)’arda‘ (7.8)

a/r—pn
Following Section 8 of Part I [16], we obtain for (7.8) the bound,

when r < m, ‘ .
Bexp(—%n'—'“)expr(B +li:—'—(%—m)logn) =

3 (7.9)
=Bexp(—7n'-'")expr(8+%ﬂ—(%—u.)logn).
Further, since exp(2x, (n)) -- Bm-w; X,(n):(é—-—u)logn-}-B,

then 1 4 1 1 ‘

?logm—(?—u,) logn = 7logm—(-2-—p.) logn - (#y—n)logn =
P

=;-logm—X,(n)+B—m,.<-£—logm—X,(n)-»-—oo.

By summing the bounds of (7.9) with respect tor = 3, 4, ...,
m, we find the error

Bexp (—-}-'_l“'“) = Bexp(—c, exp2X, (n)). (7.10)

\

By bounding the integral over (-e, -nl/ 2 “H) 1in the same way, we

arrive at the formula
L7 B o XE N
Pz, (X) = — — oLy I
M w 2n_.£°""( 2 -“"-)(‘*E (7% )+ (7.11)

-+ Bexp(= ¢ exp (2X, (). . . -
8. At 3< r < n, let us now examine [16]

oo

Sev—er2—gra . o™ (g e {8.1)

—aQ

At 3 { r £ c3 we have for (8.1) the bound

-11-



(8.2)

ey J ".\ lx'l _’
Be "'Z_n. i (Vay "
When Yemit
n/r
lxI< " (8.3)
(8.1) has the bound
‘e (+-») 1
Be—'h Pigp * 3 (L YL %8/ _..'_
,2."." no ey S e (8.4)

Now let cg < r {m. Let us assume r = ¢; 8 = pa(0 < p £ 1/2).
Following Section 9 (see (9.7) of Part I [16]), we obtain for ¢, L Q& m

%o - o —
L, ,/,H(')(x)_Bsepq(B—(l—29)10391(")"*: (8.5)

+plogq —p (1 —2p) logn + (4, — u) log n):
Since exp(2X4(w))/m— oo, then By %/m— oo, hence logg<logm <B+(|_2u)|bé,,.
Thus plogqg—p(l —2p)logn = B—u(n), where v(n) > O. Then (see Section 6)
(ki —m)logn = —wy, logn-»—oo, as n—ee, Thus (8.5) obtains the bound
Bexp (—cq). (8.6)
If q > p,(n), then the sum of these bounds at p, (n) < @ < m is added
to the total bound

B
pan) (8.7)
Then let pa(n) be chosen such that
1—2u)] :
'°84<(—:)M-=(-;-—u)lo¢n (8.8)

(note that (1 - 2u) log n— w). Then (8.5) has the bound
sup (Bexp(—q(1—2¢)logpu (n)) + Bexp (—qp (3 —u)logn)) = Bewp(—apy(m).  (8.9)
By summing the latter with respect to 3 ci < pa(n), we obtain the

bound
B

Peln) (8.10)
This proves the local 1limit theorem for the zones [0, n'/r4/p,(n)] and

[— n'/—w/p, (n), 01.' Then, on the strength of (3.1) and (3.6), A,(1) =exp(X,(n) =

-12-



= eBp'l-n, This proves Theorem 1.

9. Let us consider integral Theorem 2, following Sections 11
through 1% of Part I [16]. Now let X, have random values of a
general form; EX, = 0; D(XJ) = 1, Let h(x) be a class-I function
and let condition (0.1) be fulfilled. At first let us follow Section
3, Let us define p from condition (3.6) and let a = %»- p. We shall
prove that the zones [O, na/ps(n)] and [-na/bs(n), 0] are z. n. a.
Let us go into the first of these, We shall follow the symbols and
reasoning of Sections 11 through 1% of Part I [16], pointing out only
the essential differences. It 1s important for us that (see (3.3))

i = e (X, ) > (h (Jr) )" Gogapssa (9.1)

Following the reasoning and symbols of Sections 11 through 14 of Part
I [16], we introduce Y. wn(t) and arrive at formula (12.3) of that
work.,

Note that % = ni—% > (log n)t+ts, so that

nX+1exp (— cyn39) == exp(— c,n) (9-2)
(see formula (12.5) of Part I [16]).

In view of this, formulas (12.7) and (12.8) and (13.1) through
(13.5) of Part I [16] are valid. Bound (7.2) of this work 1s taken
for x,. Following Sectlon 13 [16], we arrive at formula (13.11). We
must, however, then give a more accurate bound in this formula. It

is written as follows:

r""”‘.) d ==B’! -——I__“: - -85
1 g— Xy

When 1< <n%p(n), Q=q—25 = q(l —2p) the bound 1is easily found
by the saddle-point method (Q > 1):

Ie—“'ﬁuoda=Boﬁ‘leXp(—%“'__*_L_:Q,Iog%l+_;_Q). (9'4)
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We see that 1f #A>m>Qx>Vm>VQ  then (9.4) reduces to the bound

B®:3 " exp (_x_:) (9.5)
2

Reasoning as in Section 8, we arrive at a proof of the integral
limit theorem for the zone l.ﬁ- n"/:{-(n)l- Now let x,<yYm Then (9.4) 18

bounded by the value
Q Q;' + "
B xIexp (—-.‘a'—)exp(?QlogQ). (9_6)
When s=pq, 0<p<-;— we take the corresponding term of (9.3), taking
into account bound (9.9) and the bounds x /qi = B exp (439 log n)p n-dz ® oxp (=q log n/2),
q
which must be multiplied by that term. As a result, when multiplying

by x, oxp —ZL)lwe have the following bound (see Section 9 [16]; x; < y/mJ:
5 (-3 , . : <
ngpq(8+(l—2p)-2-log¢n—plogq—(l-2p)1q;q+ logq—

—oplogp— (] — —oy 1 -
taozf»1 (1 —2p)log (1 —2¢) 2logn+uil°¢")f , (9.7)
=Bequ(8+(?—p)logm+plogq—plogp—(l—-2p)log(l—2p)—
N ‘s 1 1 -
(2 u.)logn)=Bequ(B+—z—logm—(E-—p)logn—o.Alogn).
Then (—;-—u)logn—-;-logm-.oo, wnlogn — oo (see Section 8). Therefore

(9.7) has the bound

Bexp (— gp (n)). (9.8)
Summing this bound with respect to 3 < q { m, we find
B
pa(n) ’ (9.9)

which proves the integral theorem for the zone [1,\/_7. The zone
|—n°/p.(n)_—|| 1s treated analogously, while thé zone [-1, 1] corresponds
to a known theorem. Thereby, Theorem 2 1s proven.

10. Now let us consider Theorems 3, 4 and 5. Théy concern the
narrowest zones. The functions h(x) of class III (see (1.5) [16]),
which satisfy the condition

3logx h(x) << Mlogx, (10.1)
where M 1s a constant, correspond to the case of the existence of a

third moment, but, generally speaking, to the non-exlstence of moments,

=14~



S

starting from some number. In this case, by classical means (see (1)),
1t can be established that [0, Viognp(n) and [—Viognp(n), 0] will be z. u.
1. n. a. for values of class (d), and z. n. a. in general, and that
the zones (0, Viogn p(m)l; (— Viognp(n), 0], Will not be such if not all
moments exist., This 1s the substance of Theorem 5. These same results
can be obtained by using the means described below.

Let us take Theorems 3 and 4, which pertain to functions of class

II. For these functions we have (see Section 1 [16])

p.(x)k)gx<h(x)<(logx)l’ (10.2)
where
h(x) = M(x) log x = N (log x) log x, (10.3)
where
'N’(z) =0 88 z— co. (10.4)
Let
A(n) = VM(n)Viogn. (10.5)

If the zones|0, A(n). p(n)] and(—A(m)p(n), 0l are z, u. 1. n. a. (it 1s
understood that we are dealing with values of XJC(d) or z. n. a.),
then (0.1) must be fulfilled. This is proven in the same way as the
corresponding assertion 1n Section 2. Now let us prove that condition
(0.1) 1s sufficlent in order that the zones [0, A(n)/p(n)} and [— A (n)/p(n),0)
be z. u., 1. n. a.

Let w > O be a positive number, which will be fixed later on;
ch(d), we have

—ah ,
pra) = L2 { (@O eip(—itx VA) i + Bexp(m comt—m) (10.6)
- |

Following Section 4, let us take the bound

() = BSx'ExR (—h(x)dx - 'B'§°ex'p (qlogx—h (x)) dx. (10.7)
N , . { . '
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Let Q(q) be a solution of the equation

h'(x)=q+4logx,‘ te0e M (%)== q+ 4. (10-8)
Then

{expqlogx—hinar =8 { £ =8, (10.9)

CT 1)

Sexp (_q log x — h (x)) dx = BQ (q) exp (¢ log Q (4)) = Bexp (g + 1) log ¢ (). (10.10)

Let us use this rough bound for w(Q)(t), which 1s sufficient for our
purposes. From (10.8) we find

Q@) =M (g +4) (10.11)
so that (10.10) gives
¢ () = Bexp(q + 1) log M (g'+ 4). (10.12)
Following Section 4 we find
K(0) -- Bexp(q + 1) log M~ (¢ + 4), (10.13)
s | K= ‘T"'l = Bexp (log M~ (m + 4) — pm log n). (10.14)

11, Now let us choose p according to the condition

=% = (A (n))* = M (n) log n. (11.1)
Thus
“=-;-—%+To%;; X (n) = log A (n) = O (log log n). (11.2)
Let T = 1076, Let us take m under the condition that
IogM“(m+4).='_"'T:.§L'+B, (11.3)
Then, on the strength of (10.4),
w
m+4=Mn") ‘=N(32£logn)xN(logn).,M(n)‘ (11.%)

Now from formula (10.14) we obtaln, according to (11.4), (11.2),

sup

ey
Hiea—h : (l) m!

=BexP(f(g—-§-)logn+B)m= (11.5)

= Bexp(— cyM(n) logn) -= Bexp (— ¢, (A (n))¥).
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Thus we have

- ahk
I’z,.(x)m%:L S eXP(—?+nK.(l)—inTtx)dt+Bexp(—-c.(A(n))'),
' =t (11.6)
f) = T‘ ri .
Kl() ’2-,"P " (11.7)
Now we must deal with the integral function exp nK,(t). Let
=099 b, (11.8)

and let us bound nKs(t) when |t| < n"M1, For r < ¢, We have y,, = B and

"3 Lw.-b

ICrge,

=00, (12.9)
Then, when ¢, < r { m we have, on the strength of (10.13),

24 -
- = Bexp((r + 1) log M (r - 4)—prilogn—2logr) =

", (11.10)

=Bexp(—r9%%‘i)=8n e,
From (11.9) and (11.10) at |t]| < n”H*1 we derive
nKy(f) = B (11.11)
and hence, using the Cauchy integral (see (7.2)),
% wBrl nrw, (11.12)

When r > m, |t| < m™™1, from (11.10) we find

@ %
2“ %— = Bexp(— 0,005 m log n) ==

P (11.13)
= Bexp (— cyM (n) log n) = Bexp(— ¢y (A (n))}).
12, Hence .
yn rt ne g’
Pz, (X) == = expl———itxVan |14+ S =0 |dt
o _'n§u ( - )( §lﬂ ) * (12’1)
+ Bexp(—cip (A (0)?). b
Let us substitute € = t /m:
n'/t—ll
Y I ¢ SR FERCE Y38 Y
Pz, (%) = '/S.‘“exp,( > th) (l } 2_,' ',(/n.) ) dt + (12.2)

+ Bexp(— ¢y (A (m))).
At a given r { m let us consider )
X ¢ : 2 - NAN . 4
n (Vn) S eXP(—%)E’dE -I}’[‘(_;_)n (g u)cxp(-——:-'n‘-'u), (12.3)

a1
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Factoring out exp(—-i-n‘—'“). let us bound the second factor in (12.3).
Taking (11.4) into account, we find

B'P(é—)n‘.(—%-“')’ - Bexpr(B +l£§-’-- (T}—”l)]oﬂ")' (12.4)
lw“%%_ﬁy%mgqu—ﬁmeMw<—%wm (12.5)

Therefore, (12.3) has the bound Bn"r/ 4, and the sum with respegt to

i1 -2u

r> c, glves (1). Then n = (A(n))®, so that from (12.2) we find

o0

=g i Eom) (11 5k (b )

~00 rmsy

+B exp ("-c" (A (n))‘);
the term V}E—.e—"la is i1solated from (12.6); here

Y-
0 <™ _Aly
SES o pr(n) (12.7)

When 3 { r £ Cy the sum of the corresponding terms will equal
o(l)e—»h, (12.8)
When Cgy < r<m following Section 8, we arrive at an examination of
the expression '
r (B~ (1 —2p) log ps (n) + plogr — p (1 — 21) logn — (n — ;) log n). (12.9)
Here log r  log m = B log log n (see (11.4)). In view of this, (12.9)
gives the bound
Buy--rtn—po), (12.10)
Summation with respect to caergm glves the error
;B’_.' (12.11)
after which, it follows from (12.6) that
P2, (1) = i exp(— 22) (1 + 0 (). (12.12)
The zone [—A(n)/p;(n), 0. 18 treated analogously.
13, The 1ntegral theorem 1s proven exactly as in Section 9;
here there are rather rough bounds derived in Sections 10 through 12.
It 1s also essentlal (see Sectlon 9) that (A(n)*=M(n)logn>p(n)logn (see

(10.2)). In view of this

FTD-TT-62-1148/1+2+4 -18-



nt+iexp (— cu (A (0)") = exp(—cia (A ())) (13.1)

(see formula (12.5) [16] and we can reason further, as in Section 9.

Submitted June 28, 1960
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